login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096496
Number of distinct primes in the periodic part of the continued fraction for sqrt(prime(n)).
3
1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 2, 0, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 0, 2, 1, 0, 1, 1, 2, 1, 4, 2, 1, 4, 2, 4, 3, 4, 1, 0, 4, 1, 3, 2, 0, 3, 4, 1, 0, 1, 1, 2, 2, 2, 0, 0, 1, 1, 3, 1, 1, 0, 4, 3, 3, 1, 5, 3, 2, 2, 2, 1, 3, 2, 4, 2, 1, 2, 0, 3, 4, 5, 5, 3, 1, 0, 3, 4, 1, 4, 1, 3, 3, 2, 1, 1, 2, 2, 2, 4, 4, 0, 2, 3, 4
OFFSET
1,8
LINKS
EXAMPLE
n=31: prime(31) = 127, and the periodic part of the continued fraction of sqrt(127) is {3,1,2,2,7,11,7,2,2,1,3,22}, so a(31) = 4.
MATHEMATICA
{te=Table[0, {m}], u=1}; Do[s=Count[PrimeQ[Union[Last[ContinuedFraction[f[n]^(1/2)]]]], True]; te[[u]]=s; u=u+1, {n, 1, m}]; te
Count[Union[ContinuedFraction[Sqrt[#]][[2]]], _?PrimeQ]&/@Prime[ Range[ 110]] (* Harvey P. Dale, Apr 27 2016 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 29 2004
STATUS
approved