login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies 1/(1-x) = Product_{k>=1} A(x^k).
23

%I #25 Jul 06 2024 14:14:54

%S 1,1,0,-1,-1,-1,0,0,0,0,1,0,0,-1,0,1,2,-1,-1,-2,0,1,3,-1,0,-1,1,-1,1,

%T -3,1,-1,1,-2,3,0,6,-1,-1,-6,2,-4,4,-3,2,-4,6,-5,6,-2,7,-5,4,-13,5,-3,

%U 11,-6,8,-14,10,-6,9,-14,11,-14,15,-13,9,-15,24,-13,19,-21,12,-20,27,-24,21,-26,22,-24,33,-33,32,-26

%N G.f. A(x) satisfies 1/(1-x) = Product_{k>=1} A(x^k).

%C Self-convolution inverse is A117208.

%H Vaclav Kotesovec, <a href="/A117209/b117209.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Paul D. Hanna)

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: A(x) = exp( Sum_{n>=1} A023900(n)*x^n/n ), where A023900 is the Dirichlet inverse of Euler totient function.

%F Euler transform of the Möbius function A008683. - _Stuart Clary_, _Franklin T. Adams-Watters_ and _Vladeta Jovovic_, Apr 15 2006

%F G.f.: A(x) = Product_{k>=1}(1 - x^k)^(-mu(k)) where mu(k) is the Möbius function, A008683. - _Stuart Clary_ and _Franklin T. Adams-Watters_, Apr 15 2006

%F G.f.: A(x) = Product_{k>=1} (1 + x^(2*k-1))^mu(2*k-1), where mu() is the Moebius function. - _Seiichi Manyama_, Jul 06 2024

%t nmax = 85; CoefficientList[ Series[ Product[ (1 - x^k)^(-MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* _Stuart Clary_, Apr 15 2006 *)

%o (PARI) {a(n)=polcoeff(exp(sum(k=1,n+1,sumdiv(k,d,d*moebius(d))*x^k/k)+x*O(x^n)),n)}

%Y Cf. A023900 (l.g.f.), A117208 (inverse); variants: A117210, A117211, A117212.

%Y Cf. A008683.

%K sign

%O 0,17

%A _Paul D. Hanna_, Mar 03 2006