login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117211
G.f. A(x) satisfies 1/(1+x) = product_{n>=1} A(x^n).
8
1, -1, 2, -1, 1, 1, -2, 4, -4, 4, -3, 2, 0, -1, 2, -3, 4, -5, 5, -4, 4, -3, 1, 1, -2, 3, -5, 5, -5, 3, -1, 1, 3, -4, 3, -2, 2, -1, -3, 4, -6, 4, -4, 5, 0, -4, 2, -1, 4, -2, 3, -3, 6, -9, 7, -1, 1, -4, -8, 10, -6, 10, -11, 12, -9, -4, 7, -7, 15, -25, 10, -5, 13, 1, -6, 16, -21, 14, -15, 28, -6, -12, -3, 1, 18, -18, 17, -25, 13
OFFSET
0,3
COMMENTS
Self-convolution inverse is A117210.
LINKS
FORMULA
G.f.: A(x) = exp( -Sum_{n>=1} A117212(n)*x^n/n ).
G.f.: A(x) = product_{k>=1}(1 + x^k)^(-mu(k)) where mu(k) is the Möbius function, A008683. - Stuart Clary, Apr 15 2006
MATHEMATICA
nmax = 88; CoefficientList[ Series[ Product[ (1 + x^k)^(-MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* Stuart Clary, Apr 15 2006 *)
PROG
(PARI) {a(n)=if(n==0, 1, if(n==1, -1, (-1)^n-polcoeff(prod(i=1, n, sum(k=0, min(n\i, n-1), a(k)*x^(i*k))+x*O(x^n)), n, x)))}
CROSSREFS
Cf. A117212 (l.g.f.), A117210 (inverse); variants: A117208, A117209.
Sequence in context: A026519 A025177 A026148 * A246576 A358273 A215894
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 03 2006
STATUS
approved