|
|
A117211
|
|
G.f. A(x) satisfies 1/(1+x) = product_{n>=1} A(x^n).
|
|
8
|
|
|
1, -1, 2, -1, 1, 1, -2, 4, -4, 4, -3, 2, 0, -1, 2, -3, 4, -5, 5, -4, 4, -3, 1, 1, -2, 3, -5, 5, -5, 3, -1, 1, 3, -4, 3, -2, 2, -1, -3, 4, -6, 4, -4, 5, 0, -4, 2, -1, 4, -2, 3, -3, 6, -9, 7, -1, 1, -4, -8, 10, -6, 10, -11, 12, -9, -4, 7, -7, 15, -25, 10, -5, 13, 1, -6, 16, -21, 14, -15, 28, -6, -12, -3, 1, 18, -18, 17, -25, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Self-convolution inverse is A117210.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: A(x) = exp( -Sum_{n>=1} A117212(n)*x^n/n ).
G.f.: A(x) = product_{k>=1}(1 + x^k)^(-mu(k)) where mu(k) is the Möbius function, A008683. - Stuart Clary, Apr 15 2006
|
|
MATHEMATICA
|
nmax = 88; CoefficientList[ Series[ Product[ (1 + x^k)^(-MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* Stuart Clary, Apr 15 2006 *)
|
|
PROG
|
(PARI) {a(n)=if(n==0, 1, if(n==1, -1, (-1)^n-polcoeff(prod(i=1, n, sum(k=0, min(n\i, n-1), a(k)*x^(i*k))+x*O(x^n)), n, x)))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|