login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117211 G.f. A(x) satisfies 1/(1+x) = product_{n>=1} A(x^n). 8
1, -1, 2, -1, 1, 1, -2, 4, -4, 4, -3, 2, 0, -1, 2, -3, 4, -5, 5, -4, 4, -3, 1, 1, -2, 3, -5, 5, -5, 3, -1, 1, 3, -4, 3, -2, 2, -1, -3, 4, -6, 4, -4, 5, 0, -4, 2, -1, 4, -2, 3, -3, 6, -9, 7, -1, 1, -4, -8, 10, -6, 10, -11, 12, -9, -4, 7, -7, 15, -25, 10, -5, 13, 1, -6, 16, -21, 14, -15, 28, -6, -12, -3, 1, 18, -18, 17, -25, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Self-convolution inverse is A117210.
LINKS
FORMULA
G.f.: A(x) = exp( -Sum_{n>=1} A117212(n)*x^n/n ).
G.f.: A(x) = product_{k>=1}(1 + x^k)^(-mu(k)) where mu(k) is the Möbius function, A008683. - Stuart Clary, Apr 15 2006
MATHEMATICA
nmax = 88; CoefficientList[ Series[ Product[ (1 + x^k)^(-MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* Stuart Clary, Apr 15 2006 *)
PROG
(PARI) {a(n)=if(n==0, 1, if(n==1, -1, (-1)^n-polcoeff(prod(i=1, n, sum(k=0, min(n\i, n-1), a(k)*x^(i*k))+x*O(x^n)), n, x)))}
CROSSREFS
Cf. A117212 (l.g.f.), A117210 (inverse); variants: A117208, A117209.
Sequence in context: A026519 A025177 A026148 * A246576 A358273 A215894
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 03 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 11:06 EDT 2024. Contains 375730 sequences. (Running on oeis4.)