login
A246576
G.f.: (Product_{r>=1} (1 - x^r))*x^(k^2)/Product_{i=1..k} ((1 - x^i)^2) with k=2.
1
0, 0, 0, 0, 1, 1, 2, 1, 1, -1, -2, -4, -5, -6, -6, -5, -4, -1, 1, 5, 7, 11, 12, 15, 14, 15, 12, 11, 6, 3, -3, -7, -13, -17, -22, -25, -28, -29, -29, -28, -25, -22, -16, -11, -3, 3, 12, 18, 27, 32, 40, 43, 49, 49, 52, 49, 49, 43, 40, 31, 25, 14, 6, -6, -15, -27, -36, -47, -55, -64
OFFSET
0,7
REFERENCES
Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70.
MAPLE
fGL:=proc(k) local a, i, r;
a:=x^(k^2)/mul((1-x^i)^2, i=1..k);
a:=a*mul(1-x^r, r=1..101);
series(a, x, 101);
seriestolist(%);
end; fGL(2);
CROSSREFS
k=0 gives A010815. Cf. A246575-A246578.
Sequence in context: A025177 A026148 A117211 * A358273 A215894 A061545
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Aug 31 2014
STATUS
approved