login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332908
Number of entries in the fourth cycles of all permutations of [n] when cycles are ordered by increasing lengths.
3
1, 21, 226, 2612, 29261, 346453, 4338214, 57819554, 815225643, 12234293579, 194294281572, 3264124624256, 57826690252441, 1079032037759257, 21142347350725466, 434563256137908638, 9344589765620199919, 209952915324112384719, 4919186923210370523448
OFFSET
4,2
LINKS
Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.
Wikipedia, Permutation
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*
b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
(n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 4)[2]:
seq(a(n), n=4..22);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0, Sum[Function[ p, p + If[p =!= 0 && t>0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][(i-1)!^j* b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Array[i&, j], n - i*j]]], {j, 0, n/i}]]];
a[n_] := b[n, 1, 4][[2]];
a /@ Range[4, 22] (* Jean-François Alcover, Apr 21 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A322383.
Sequence in context: A219439 A219140 A231513 * A027508 A221037 A221500
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 02 2020
STATUS
approved