OFFSET
0,4
COMMENTS
a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1268
Andreas B. G. Blobel, An Asymptotic Form of the Generating Function Prod_{k=1,oo} (1+x^k/k), arXiv:1904.07808 [math.CO], 2019.
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 137.
A. Knopfmacher and J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.
D. Zeilberger, N. Zeilberger, Fractional Counting of Integer Partitions, 2018.
FORMULA
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022
EXAMPLE
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +b(n-i, min(i-1, n-i))/i))
end:
a:= n-> numer(b(n$2)):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
a[n_] := Numerator[b[n, n]];
a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Alois P. Heinz, Dec 05 2018
STATUS
approved