Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Dec 08 2018 20:02:57
%S 1,3,13,67,411,2911,23563,213543,2149927,23759791,286370151,
%T 3734929903,52455166063,788704078527,12648867695311,215433088624351,
%U 3884791172487903,73919882720901823,1480542628345939807,31128584449987511871,685635398619169059391
%N Sum over all n! permutations of n letters of maximum cycle length.
%C Sum the n-permutations having at least 1 cycle of length >= i for all i >= 1. A000142 + A033312 + A066052 + A202364 + ... The summation is precisely that indicated in the title since each permutation whose longest cycle = i is counted i times. - _Geoffrey Critzer_, Jan 09 2013
%D S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183.
%D R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
%H Alois P. Heinz, <a href="/A028418/b028418.txt">Table of n, a(n) for n = 1..450</a> (first 142 terms from Thomas Dybdahl Ahle)
%H Ph. Flajolet and A. Odlyzko, <a href="http://algo.inria.fr/flajolet/Publications/FlOd90b.pdf">Singularity analysis of generating functions</a>, p. 22.
%F E.g.f.: Sum_{k>=0} (1/(1-x) - exp(Sum_{j=1..k} x^j/j)).
%F a(n) = f(n, 0, n, n!) where f(L, r, n, m) = m*r if r >= l, otherwise Sum_{k=0..L-1} (f(k, max(L-k,r), n-1, m/n) + (n-L)*f(L, r, n-1, m/n)). - _Thomas Dybdahl Ahle_, Aug 15 2011
%F a(n) = Sum_{k=1..n} k * A126074(n,k). - _Alois P. Heinz_, May 17 2016
%p b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
%p b(n-j, max(m,j))*binomial(n-1, j-1), j=1..n))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=1..25); # _Alois P. Heinz_, May 14 2016
%t kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}];
%t a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax]
%t (* _Jean-François Alcover_, Jun 22 2011, after e.g.f. *)
%t a[ n_] := If[ n < 1, 0, 1 + Total @ Apply[ Max, Map[ Length, First /@ PermutationCycles /@ Drop[ Permutations @ Range @ n, 1], {2}], 1]]; (* _Michael Somos_, Aug 19 2018 *)
%Y Cf. A006128, A028417, A060014, A126074.
%Y Column k=1 of A322384.
%K nonn
%O 1,2
%A Joe Keane (jgk(AT)jgk.org)
%E More terms from _Vladeta Jovovic_, Sep 19 2002
%E More terms from _Thomas Dybdahl Ahle_, Aug 15 2011