login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194019
E.g.f. = exp(-x*(x+4)/2)/(1-x)^3.
0
1, 1, 3, 13, 67, 423, 3133, 26479, 251529, 2651041, 30680659, 386635269, 5268724987, 77182895047, 1209369057453, 20180004340087, 357229013263057, 6686021868702081, 131910248042613091, 2735955184504781629, 59512017882001393011, 1354597373468317860391, 32199995769317030466013, 797895597172079337217983
OFFSET
0,3
COMMENTS
E.g.f. satisfies (1-x)*f'(x) = (1+x+x^2)*f(x).
FORMULA
a(n) ~ n!*exp(-5/2)*n^2/2. - Vaclav Kotesovec, Jun 27 2013
D-finite with recurrence a(n) -n*a(n-1) +(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 20 2021
MAPLE
read transforms; Order:=25; ics:=f(0)=1;
e1:=(1-x)*diff(f(x), x) = (1+x+x^2)*f(x);
dsolve({e1, ics}, f(x), series);
SERIESTOLISTMULT(rhs(%));
MATHEMATICA
CoefficientList[Series[E^(-x*(x+4)/2)/(1-x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
CROSSREFS
Sequence in context: A028418 A180191 A080832 * A020017 A060014 A182666
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 12 2011
STATUS
approved