login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x) * (sec(exp(x) - 1))^2.
6

%I #22 Jul 28 2018 10:38:09

%S 1,1,3,13,67,421,3115,26349,250867,2655541,30929019,393019837,

%T 5410699075,80221867909,1274393162827,21594697199757,388796268801427,

%U 7411769447027413,149143210226032923,3159088788867736669

%N Expansion of e.g.f. exp(x) * (sec(exp(x) - 1))^2.

%C Take the smallest element from each block of the set partitions of {1,2,...,n+1} into an odd number of blocks. Form a "zag" permutation a[1],a[2],...,a[k] such that a[1] < a[2] > a[3] < ... > a[k]. a(n) is the number of ways to order the blocks in accordance with such "zag" permutations. - _Geoffrey Critzer_, Nov 23 2012

%H Muniru A Asiru, <a href="/A080832/b080832.txt">Table of n, a(n) for n = 0..100</a>

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 144

%F E.g.f.: exp(x) / (cos(exp(x) - 1))^2.

%F The sequence 0, 1, 1, 3, ... has e.g.f. tan(exp(x)-1). It has general term sum{k=0..n, S2(n, k) A009006(k)} for n>1 (S2(n, k) Stirling numbers of second kind). - _Paul Barry_, Apr 20 2005

%F a(n) ~ 2*n * n! / ((2+Pi) * (log(1+Pi/2))^(n+2)). - _Vaclav Kotesovec_, Jul 28 2018

%p seq(coeff(series(factorial(n)*exp(x)*(sec(exp(x)-1))^2, x,n+1),x,n),n=0..25); # _Muniru A Asiru_, Jul 28 2018

%t nn=21;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[Tan[Exp[x]-1],{x,0,nn}],x],1] (* _Geoffrey Critzer_, Nov 23 2012 *)

%Y Cf. A000182, A219613.

%K easy,nonn

%O 0,3

%A _Emanuele Munarini_, Mar 28 2003