login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] having at least one succession. A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.
22

%I #59 Jul 04 2021 20:48:56

%S 0,1,3,13,67,411,2921,23633,214551,2160343,23897269,288102189,

%T 3760013027,52816397219,794536751217,12744659120521,217140271564591,

%U 3916221952414383,74539067188152941,1493136645424092773,31400620285465593339,691708660911435955579

%N Number of permutations of [n] having at least one succession. A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.

%C a(n) = A180190(n,1).

%C a(n+2) = p(n+2) where p(x) is the unique degree-n polynomial such that p(k) = k! for k = 1, ..., n+1. - _Michael Somos_, Jan 05 2012

%C From _Jon Perry_, Jan 04 2013: (Start)

%C Number of permutations of {1,...,n-1,n+1} with at least one indexed point p(k)=k with 1<=k<=n. Note that this means p(k)=n+1 is never an indexed point as k<n+1. Permutations of {1,2,4} with an indexed point p(k)=k are 124, 142 and 421, so a(3)=3.

%C For n>1, a(n) is the number of permutations of [n+1] that have a fixed point and contain 12; for example the a(3)=3 such permutations of {1,2,3,4} are 1234, 1243, and 3124.

%C (End)

%C For n > 0: row sums of triangle A116853. - _Reinhard Zumkeller_, Aug 31 2014

%H Alois P. Heinz, <a href="/A180191/b180191.txt">Table of n, a(n) for n = 1..200</a>

%H Uriel Feige, <a href="http://www.wisdom.weizmann.ac.il/~feige/mypapers/OnlineMatchingFeige2018.pdf">Tighter bounds for online bipartite matching</a>, 2018.

%F a(n) = n! - d(n) - d(n-1), where d(j) = A000166(j) are the derangement numbers.

%F a(n) = n! - A000255(n-1) = A002467(n) - A000166(n-1). - _Jon Perry_, Jan 05 2013

%F a(n) = (n-1)! [x^(n-1)] (1-exp(-x))/(1-x)^2. - _Alois P. Heinz_, Feb 23 2019

%e x^2 + 3*x^3 + 13*x^4 + 67*x^5 + 411*x^6 + 2921*x^7 + 23633*x^8 + ...

%e a(3) = 3 because we have 123, 312, and 231; the permutations 132, 213, and 321 have no successions.

%e a(4) = 13 since p(x) = (3*x^2 - 7*x + 6) / 2 interpolates p(1) = 1, p(2) = 2, p(3) = 6, and p(4) = 13. - _Michael Somos_, Jan 05 2012

%p d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: seq(factorial(n)-d[n]-d[n-1], n = 1 .. 22);

%t f[n_] := Sum[ -(-1)^k (n - k)! Binomial[n - 1, k], {k, 1, n}]; Array[f, 20] (* _Robert G. Wilson v_, Oct 16 2010 *)

%o (PARI) {a(n) = if( n<2, 0, n--; subst( polinterpolate( vector( n, k, k!)), x, n+1))} /* _Michael Somos_, Jan 05 2012 */

%o (Haskell)

%o a180191 n = if n == 1 then 0 else sum $ a116853_row (n - 1)

%o -- _Reinhard Zumkeller_, Aug 31 2014

%Y Cf. A000142, A000166, A000255, A002467, A028417, A180190.

%Y Cf. A116853, A276975.

%Y Column k=1 of A306234, A306461, and of A324362(n-1).

%K nonn

%O 1,3

%A _Emeric Deutsch_, Sep 07 2010