login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of permutations of [n] with k circular successions (0<=k<=n-1). A circular succession in a permutation p of [n] is either a pair p(i), p(i+1), where p(i+1)=p(i)+1 or the pair p(n), p(1) if p(1)=p(n)+1.
4

%I #18 Feb 19 2017 06:55:19

%S 1,0,2,3,0,3,8,12,0,4,45,40,30,0,5,264,270,120,60,0,6,1855,1848,945,

%T 280,105,0,7,14832,14840,7392,2520,560,168,0,8,133497,133488,66780,

%U 22176,5670,1008,252,0,9,1334960,1334970,667440,222600,55440,11340,1680,360,0

%N Triangle read by rows: T(n,k) is the number of permutations of [n] with k circular successions (0<=k<=n-1). A circular succession in a permutation p of [n] is either a pair p(i), p(i+1), where p(i+1)=p(i)+1 or the pair p(n), p(1) if p(1)=p(n)+1.

%C For example, p=(4,1,2,5,3) has 2 circular successions: (1,2) and (3,4).

%C Sum of entries in row n = n! = A000142(n).

%C T(n,0)=nd(n-1)=A000240(n).

%C T(n,1)=n(n-1)d(n-2)=A180189(n).

%C Sum(k*T(n,k), k>=0)=n! = A000142(n) if n>=2.

%H Alois P. Heinz, <a href="/A180188/b180188.txt">Rows n = 1..141, flattened</a>

%H S. M. Tanny, <a href="http://dx.doi.org/10.1016/0097-3165(76)90063-7">Permutations and successions</a>, J. Combinatorial Theory, Series A, 21 (1976), 196-202.

%F T(n,k) = n*C(n-1,k)*d(n-1-k), where d(j) = A000166(j) are the derangement numbers (see Prop. 1 of the Tanny reference).

%F T(n,k) = n*A008290(n-1,k), 0<=k<n, n>=1. - _R. J. Mathar_, Sep 08 2013

%e T(3,2) = 3 because we have 123, 312, and 231.

%e The triangle starts:

%e 1;

%e 0, 2;

%e 3, 0, 3;

%e 8, 12, 0, 4;

%e 45, 40, 30, 0, 5;

%p A180188 := proc (n, k) n*binomial(n-1, k)*A000166(n-1-k) end proc:

%p for n to 10 do seq(A180188(n, k), k = 0 .. n-1) end do; # yields sequence in triangular form

%t T[n_, k_] := n*Binomial[n-1, k]*Subfactorial[n-1-k]; Table[T[n, k], {n, 0, 10}, {k, 0, n-1}] // Flatten (* _Jean-François Alcover_, Feb 19 2017 *)

%Y Cf. A000142, A000166, A000240, A180189.

%K nonn,tabl

%O 1,3

%A _Emeric Deutsch_, Sep 06 2010