login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A072456
Annihilating primes for A000522.
6
3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, 151, 157, 191, 199, 229, 233, 241, 263, 269, 277, 283, 311, 317, 337, 347, 359, 367, 379, 397, 433, 449, 467, 487, 503, 521, 541, 563, 569, 571, 577, 593, 607, 613, 619, 647, 659, 673, 683, 691, 727, 743, 769, 773, 809, 823, 827, 911, 919, 929, 953, 971, 991
OFFSET
1,1
COMMENTS
Primes p such that A072453(p) = 0.
LINKS
C. Cobeli and A. Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1, 2013, pp. 73-98. - From N. J. A. Sloane, Feb 16 2013
Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5 (1999) 138-150. (ps, pdf)
PROG
(Perl) use warnings;
use strict;
use ntheory ":all";
use Math::GMPz;
use Memoize; memoize 'a000522';
sub a000522 {
my($n, $sum, $fn) = (shift, 0, Math::GMPz->new(1));
do { $sum += $fn; $fn *= ($n-$_); } for 0 .. $n;
$sum;
}
sub a072453 {
my $n = shift;
vecsum( map { a000522($_) % $n == 0 } 0 .. $n-1 );
}
forprimes { print "$_\n" unless a072453($_) } 1000;
# Dana Jacobsen, Feb 16 2016
CROSSREFS
Sequence in context: A190898 A142248 A045421 * A138659 A020590 A373631
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 02 2002
EXTENSIONS
More terms from Vladeta Jovovic, Aug 02 2002
Offset corrected by Amiram Eldar, May 15 2020
STATUS
approved