This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226167 Array read by antidiagonals: a(i,j) is the number of ways of labeling a tableau of shape (i,1^j) with the integers 1, 2, ... i+j-2 (each label being used once) such that the first row is decreasing, and the first column has m-1 labels. 2
 1, 3, 1, 12, 5, 1, 60, 27, 7, 1, 360, 168, 48, 9, 1, 2520, 1200, 360, 75, 11, 1, 20160, 9720, 3000, 660, 108, 13, 1, 181440, 88200, 27720, 6300, 1092, 147, 15, 1, 1814400, 887040, 282240, 65520, 11760, 1680, 192, 17, 1, 19958400, 9797760, 3144960, 740880, 136080, 20160, 2448, 243, 19, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For an arbitrary composition c, let F_c^p denote the linear transformation of NSym that is adjoint to multiplication by the fundamental quasi-symmetric function indexed by c. Then a(i,j) equals the coefficient of H_(1,1) in (F_(1)^p)^(i+j-2)(H_(i,1^j)) (see below SAGE program, and Corollary 2.7 in the below link). Let M(n) = [a(i,j)]_{n x n}. Then det(M(n))=A000178(n)=the n-th superfactorial. Let p_n(x) denote the polynomial such that a(x,n)=p_n(x). Then the coefficient of x in p_n(x) is |A009575(n)|. For example, p_4(x)=4x^3+18x^2+26x+12, and the coefficient of x in p_4(x) is |A009575(4)|=26. First row is A001710. Second row is A138772. Fourth row is A136659. LINKS Alois P. Heinz, Rows n = 1..141, flattened C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki, A Lift of the Schur and Hall-Littlewood Bases to Non-Commutative Symmetric Functions, 10-11. FORMULA a(i,j) = (i+j-2)!/i!*(2*i+j-1)*j/2. EXAMPLE There are a(3,2) = 7 ways of labeling the tableau of shape (3,1,1) with 1, 2 and 3 (with each label being used once) such that the first row is decreasing and the first column has 1 label: 1    2    3    X    X    X    X X    X    X    1    2    3    X X32  X31  X21  X32  X31  X21  321 The matrix [a(i,j)]_(6 x 6) is given below: [1  3  12   60   360   2520] [1  5  27  168  1200   9720] [1  7  48  360  3000  27720] [1  9  75  660  6300  65520] [1 11 108 1092 11760 136080] [1 13 147 1680 20160 257040] MAPLE a:= (i, j)-> (i+j-2)!/i!*(2*i+j-1)*j/2: seq(seq(a(i, 1+d-i), i=1..d), d=1..12);  # Alois P. Heinz, Jan 21 2014 MATHEMATICA a[n_, k_]:=(n+k-2)!/n!*(2*n+k-1)*k/2 ; Print[Array[a[#1, #2]&, {50, 50}]//MatrixForm] (* A program which gives a list of tableaux *) a[i_, j_] :=  Module[{f, list1, el, emptylist, n},   f[q_] := StringReplace[StringReplace[StringReplace[    StringReplace[ToString[q], ToString[i + j - 1] -> "X"], ", " -> ""], "{" -> ""], "}" -> ""]; list1 = Permutations[Join[Table[q, {q, 1, i + j - 2}], {i + j - 1, i + j - 1}]]; el[q_] := First[Take[list1, {q, q}]]; emptylist = {}; n = 1; While[n < 1 + Length[list1], If[Take[el[n], {j + 1, i + j}] == Sort[Take[el[n], {j + 1, i + j}], Greater] && Count[Take[el[n], {1, j + 1}], i + j - 1] == 2, emptylist = Append[emptylist, f[el[n]]], Null]; n++]; Print[emptylist]] PROG (Sage) NSym = NonCommutativeSymmetricFunctions(QQ) ; QSym = QuasiSymmetricFunctions(QQ) ; F = QSym.Fundamental() ; H = NSym.complete() ; def a(n, m):      expr = H([n]+[1 for q in range(m)]) ;      w=1 ;      while w

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)