OFFSET
1,1
COMMENTS
Subset of A033992.
The value m = 12 is probably unique. We find only 3 primitive values of n: 42 = 2*3*7, 70 = 2*5*7 and 231 = 3*7*11.
LINKS
Peter Vandendriessche, Hojoo Lee, Problems in Elementary Number Theory (see problem H67, p. 40). [Via Wayback Machine]
EXAMPLE
42 is in the sequence because the prime divisors of 42 are 2, 3 and 7 => 1/2 + 1/3 + 1/7 + 1/(2*3*7) = 12/(2+3+7) = 1.
MAPLE
with(numtheory): for n from 2 to 3500 do:x:=factorset(n): n1:=nops(x): if n1=3 then x1:=x[1]:x2:=x[2]:x3:=x[3]:s:=1/x1+ 1/x2+ 1/x3+1/(x1*x2*x3): for m from 1 to 500 do:if s=m/(x1+x2+x3) then printf ( "%d %d \n", n, m):else fi:od:fi:od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 29 2013
STATUS
approved