login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226171
Smallest base in which n is not Niven (or zero if n is Niven in every base).
2
0, 0, 2, 0, 2, 0, 2, 6, 2, 4, 2, 8, 2, 2, 2, 6, 2, 8, 2, 7, 5, 2, 2, 14, 2, 2, 2, 2, 2, 2, 2, 6, 2, 3, 2, 8, 2, 2, 2, 12, 2, 3, 2, 2, 2, 2, 2, 14, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 8, 2, 2, 2, 6, 2, 3, 2, 3, 3, 2, 2, 14, 2, 2, 2, 2, 2, 2, 2, 8, 5, 2, 2, 5, 2, 2
OFFSET
1,3
COMMENTS
Niven numbers (in base b) are divisible by the sum of their digits (in base b).
Questions: are 1, 2, 4 and 6 the only zeros in this sequence? Where are the records or high water marks?
From Bert Dobbelaere, Oct 08 2018: (Start)
1,2,4,6 are the only numbers that are Niven in every base.
Proof: Suppose n is Niven in every base, then consider the base-b representations of n for (n/2) < b <= n. These are all 2-digit numbers with 1 as 1st digit and (n-b) as last digit. Then 1+n-b is a divisor of n for all b, meaning that all numbers between 1 up to n/2 are divisors of n. Clearly there are no such numbers larger than 6.
a(n) < 60 for n < 10^13.
(End)
EXAMPLE
The sum of digits of 24 in bases 1 through 14 are: 24, 2, 4, 3, 8, 4, 6, 3, 8, 6, 4, 2, 12, 11. 24 is divisible by all these numbers except the last one; therefore a(24) = 14.
MATHEMATICA
Table[b = 2; While[s = Total[IntegerDigits[n, b]]; s < n && Mod[n, s] == 0, b++]; If[s == n, b = 0]; b, {n, 100}] (* T. D. Noe, May 30 2013 *)
PROG
(PARI) a(n) = {for (b=2, n-1, if (frac(n/sumdigits(n, b)), return(b)); ); 0; } \\ Michel Marcus, Oct 23 2018
CROSSREFS
Cf. A225427 (least Niven number for all bases from 1 to n).
Sequence in context: A281981 A159006 A291968 * A284280 A278520 A239246
KEYWORD
nonn,base
AUTHOR
Sergio Pimentel, May 29 2013
STATUS
approved