OFFSET
1,11
COMMENTS
Niven (or Harshad) numbers are numbers that are divisible by the sum of their digits.
Does a(n) exist for all n? - Klaus Brockhaus, Sep 19 2008
LINKS
David Radcliffe, Table of n, a(n) for n = 1..10000
David Radcliffe, Every positive integer divides a Harshad number
Eric Weisstein's World of Mathematics, Harshad Number
EXAMPLE
a(14) = 3 since neither 1*14 or 2*14 are Niven numbers, but 3*14 = 42 is a Niven number: 42 = 7*(4+2).
MATHEMATICA
niv[n_]:=Module[{k=1}, While[!Divisible[k*n, Total[IntegerDigits[ k*n]]], k++]; k]; Array[niv, 100] (* Harvey P. Dale, Jul 23 2016 *)
PROG
(PARI) digitsum(n) = {local(s=0); while(n, s+=n%10; n\=10); s}
{for(n=1, 100, k=1; while((p=k*n)%digitsum(p)>0, k++); print1(k, ", "))} /* Klaus Brockhaus, Sep 19 2008 */
(Python)
from itertools import count
def A144261(n): return next(filter(lambda k:not (m:=k*n) % sum(int(d) for d in str(m)), count(1))) # Chai Wah Wu, Nov 04 2022
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Sergio Pimentel, Sep 16 2008
EXTENSIONS
Edited and extended by Klaus Brockhaus, Sep 19 2008
STATUS
approved