login
A144261
a(n) = smallest k such that k*n is a Niven (or Harshad) number.
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 9, 3, 2, 3, 6, 1, 6, 1, 1, 5, 9, 1, 2, 6, 1, 3, 9, 1, 12, 6, 4, 3, 2, 1, 3, 3, 3, 1, 10, 1, 12, 3, 1, 5, 9, 1, 8, 1, 2, 3, 18, 1, 2, 2, 2, 9, 9, 1, 12, 6, 1, 3, 3, 2, 3, 3, 3, 1, 18, 1, 7, 3, 2, 2, 4, 2, 9, 1, 1, 5, 18, 1, 6, 6, 3, 3, 9, 1, 4, 5, 4, 9, 2, 2, 12, 4, 2, 1
OFFSET
1,11
COMMENTS
Niven (or Harshad) numbers are numbers that are divisible by the sum of their digits.
Does a(n) exist for all n? - Klaus Brockhaus, Sep 19 2008
LINKS
Eric Weisstein's World of Mathematics, Harshad Number
EXAMPLE
a(14) = 3 since neither 1*14 or 2*14 are Niven numbers, but 3*14 = 42 is a Niven number: 42 = 7*(4+2).
MATHEMATICA
niv[n_]:=Module[{k=1}, While[!Divisible[k*n, Total[IntegerDigits[ k*n]]], k++]; k]; Array[niv, 100] (* Harvey P. Dale, Jul 23 2016 *)
PROG
(PARI) digitsum(n) = {local(s=0); while(n, s+=n%10; n\=10); s}
{for(n=1, 100, k=1; while((p=k*n)%digitsum(p)>0, k++); print1(k, ", "))} /* Klaus Brockhaus, Sep 19 2008 */
(Python)
from itertools import count
def A144261(n): return next(filter(lambda k:not (m:=k*n) % sum(int(d) for d in str(m)), count(1))) # Chai Wah Wu, Nov 04 2022
CROSSREFS
Cf. A005349 (Niven numbers), A144262 (smallest k such that k*n is not a Niven number), A144363 (records in A144261), A144364 (where records occur in A144261).
Sequence in context: A105162 A010184 A107830 * A337819 A046148 A231933
KEYWORD
base,nonn
AUTHOR
Sergio Pimentel, Sep 16 2008
EXTENSIONS
Edited and extended by Klaus Brockhaus, Sep 19 2008
STATUS
approved