login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144258
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows: T(n,k) is the number of forests of trees on n or fewer nodes using a subset of labels 1..n and k edges.
2
1, 2, 0, 4, 1, 0, 8, 6, 3, 0, 16, 24, 27, 16, 0, 32, 80, 150, 190, 125, 0, 64, 240, 660, 1335, 1830, 1296, 0, 128, 672, 2520, 7210, 15435, 22449, 16807, 0, 256, 1792, 8736, 33040, 98105, 219912, 335160, 262144, 0, 512, 4608, 28224, 135072, 521010, 1600452, 3727962, 5902236, 4782969, 0
OFFSET
0,2
FORMULA
T(n,0) = 2^n, T(n,k) = 0 if k < 0 or n <= k, otherwise T(n,k) = n^(n-2) if k=n-1, otherwise T(n,k) = Sum_{j=0..k} C(n-1,j)*T(j+1,j)*T(n-1-j,k-j).
EXAMPLE
T(3,1) = 6, because there are 6 forests of trees on 3 or fewer nodes using a subset of labels 1,2,3 and 1 edge:
.1-2. .1... ...2. .1-2. .1.2. .1.2.
..... .|... ../.. ..... .|... ../..
..... .3... .3... .3... .3... .3...
Triangle begins:
1;
2, 0;
4, 1, 0;
8, 6, 3, 0;
16, 24, 27, 16, 0;
32, 80, 150, 190, 125, 0;
MAPLE
T:= proc(n, k) option remember;
if k=0 then 2^n
elif k<0 or n<=k then 0
elif k=n-1 then n^(n-2)
else add(binomial(n-1, j) *T(j+1, j) *T(n-1-j, k-j), j=0..k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..11);
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k == 0, 2^n, k < 0 || n <= k, 0, k == n-1, n^(n-2), True, Sum[Binomial[n-1, j]*T[j+1, j]*T[n-1-j, k-j], {j, 0, k}]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 29 2014, translated from Maple *)
CROSSREFS
Columns k = 0, 1 give A000079, A001788.
First lower diagonal gives A000272(k+1) with initial term 2.
Row sums give A144259.
Sequence in context: A153345 A140648 A153342 * A056859 A272098 A291929
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 16 2008
STATUS
approved