Every positive integer divides a Harshad number

David G. Radcliffe

October 5, 2014

A Harshad number (or Niven number) is a positive integer \(n \) that is divisible by its sum of digits \(s(n) \). For example, 42 is a Harshad number, because the sum of the digits of 42 is \(s(42) = 4 + 2 = 6 \), and 42 is divisible by 6. Harshad numbers were first investigated by D. R. Kaprekar.[2]

We will show that every positive integer \(n \) divides a Harshad number. If \(n \) is coprime to 10, then \(10^{\phi(n)} \equiv 1 \pmod{n} \) by Euler’s totient theorem.[1] Let

\[
N = \frac{10^{n\phi(n)} - 1}{10^{\phi(n)} - 1} = \sum_{k=0}^{n-1} 10^{k\phi(n)}.
\]

Since the digits of \(N \) are 1s and 0s with exactly \(n \) 1s, we see that \(s(N) = n \). On the other hand, \(N \) is divisible by \(n \) since \(10^{k\phi(n)} \equiv 1 \pmod{n} \) for all \(k \). Therefore, \(N \) is a Harshad number that is divisible by \(n \).

Now suppose that \(n \) is not coprime to 10. Then we can write \(n \) uniquely as \(n = mn_1 \), where \(m \) divides \(10^k \) for some \(k \), and \(n_1 \) is coprime to 10. By the previous argument, there exists a Harshad number \(N_1 \) that is divisible by \(n_1 \). Let \(N = 10^kN_1 \). Then \(N \) is also a Harshad number (since \(s(N) = s(N_1) \)) and \(N \) is divisible by \(n \). This completes the proof.

References
