Every positive integer divides a Harshad number

David G. Radcliffe

October 5, 2014

A Harshad number (or Niven number) is a positive integer n that is divisible by its sum of digits $s(n)$. For example, 42 is a Harshad number, because the sum of the digits of 42 is $s(42)=4+2=6$, and 42 is divisible by 6 . Harshad numbers were first investigated by D. R. Kaprekar.[2]

We will show that every positive integer n divides a Harshad number. If n is coprime to 10 , then $10^{\phi(n)} \equiv 1(\bmod n)$ by Euler's totient theorem.[1] Let

$$
N=\frac{10^{n \phi(n)}-1}{10^{\phi(n)}-1}=\sum_{k=0}^{n-1} 10^{k \phi(n)} .
$$

Since the digits of N are 1s and 0 s with exactly $n 1 \mathrm{~s}$, we see that $s(N)=n$. On the other hand, N is divisible by n since $10^{k \phi(n)} \equiv 1(\bmod n)$ for all k. Therefore, N is a Harshad number that is divisible by n.

Now suppose that n is not coprime to 10 . Then we can write n uniquely as $n=m n_{1}$, where m divides 10^{k} for some k, and n_{1} is coprime to 10 . By the previous argument, there exists a Harshad number N_{1} that is divisible by n_{1}. Let $N=10^{k} N_{1}$. Then N is also a Harshad number (since $s(N)=s\left(N_{1}\right)$) and N is divisible by n. This completes the proof.

References

[1] G. Hardy, E. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
[2] D. R. Kaprekar, Multidigital numbers, Scripta Math. 21, 27, 1955.

