login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177020
Define two triangular arrays by: B(0,0)=C(0,0)=1, B(0,r)=C(0,r)=0 for r>0, C(t,-1)=C(t,0); and for t,r >= 0, B(t+1,r)=C(t,r-1)+2C(t,r)-B(t,r), C(t+1,r)=B(t+1,r)+2B(t+1,r+1)-C(t,r). Sequence gives array C(t,r) read by rows.
3
1, 3, 1, 12, 5, 1, 53, 25, 7, 1, 247, 126, 42, 9, 1, 1192, 642, 239, 63, 11, 1, 5897, 3306, 1330, 400, 88, 13, 1, 29723, 17187, 7327, 2419, 617, 117, 15, 1, 152020, 90099, 40187, 14233, 4033, 898, 150, 17, 1
OFFSET
0,2
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..5150 (first 100 rows of the triangle)
P. Fahr, C. M. Ringel, A partition formula for fibonacci numbers, JIS 11 (2008) 08.1.4, section 4.
H. Kwong, On recurrences of Fahr and Ringel: An Alternate Approach, Fib. Quart., 48 (2010), 363-365.
EXAMPLE
Triangle begins
1
3 1
12 5 1
53 25 7 1
247 126 42 9 1
1192 642 239 63 11 1
...
MAPLE
B:=proc(t, r)global b:if(not type(b[t, r], integer))then if(t=0 and r=0)then b[t, r]:=1:elif(t=0)then b[t, r]:=0:else b[t, r]:=C(t-1, r-1)+2*C(t-1, r)-B(t-1, r):fi:fi:return b[t, r]:end:
C:=proc(t, r)global c:if(not type(c[t, r], integer))then if(r=-1)then return C(t, 0):fi:if(t=0 and r=0)then c[t, r]:=1:elif(t=0)then c[t, r]:=0:else c[t, r]:=B(t, r)+2*B(t, r+1)-C(t-1, r):fi:fi:return c[t, r]:end:
for t from 0 to 8 do for r from 0 to t do print(C(t, r)):od:od: # Nathaniel Johnston, Apr 15 2011
MATHEMATICA
bb[t_, r_] := Module[{}, If[Not[IntegerQ[b[t, r]]], Which[t == 0 && r == 0, b[t, r] = 1, t == 0, b[t, r] = 0, True, b[t, r] = cc[t-1, r-1] + 2*cc[t-1, r] - bb[t-1, r]]]; Return[b[t, r]]]; cc[t_, r_] := Module[{}, If[Not[IntegerQ[c[t, r]]], If[r == -1, Return[cc[t, 0]], Which[t == 0 && r == 0, c[t, r] = 1, t == 0, c[t, r] = 0, True, c[t, r] = bb[t, r] + 2*bb[t, r+1] - cc[t-1, r]]]]; Return[c[t, r]]]; Table[cc[t, r], {t, 0, 8}, {r, 0, t}] // Flatten (* Jean-François Alcover, Jan 08 2014, translated from Maple *)
CROSSREFS
Cf. A177011.
Sequence in context: A337472 A117375 A162995 * A226167 A185105 A122844
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Dec 08 2010
EXTENSIONS
a(15)-a(44) from Nathaniel Johnston, Apr 15 2011
STATUS
approved