|
|
A177019
|
|
a(n) = 3*10^(2*n) + 3*10^n + 1.
|
|
2
|
|
|
7, 331, 30301, 3003001, 300030001, 30000300001, 3000003000001, 300000030000001, 30000000300000001, 3000000003000000001, 300000000030000000001, 30000000000300000000001, 3000000000003000000000001, 300000000000030000000000001, 30000000000000300000000000001, 3000000000000003000000000000001
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (7-446*x+1330*x^2)/((1-x)*(1-10*x)*(1-100*x)). - Vincenzo Librandi, Aug 19 2014
E.g.f.: exp(x)*(1 + 3*exp(9*x) + 3*exp(99*x)). - Stefano Spezia, Aug 05 2024
|
|
EXAMPLE
|
For n=0, a(0)=7; n=1, a(1)=3*10^2+3*10+1=331.
|
|
MATHEMATICA
|
CoefficientList[Series[(7 - 446 x + 1330 x^2)/((1 - x)(1 - 10 x) (1 - 100 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 19 2014 *)
|
|
PROG
|
(Magma) [(3*10^(2*n)+3*10^n+1): n in [0..15]];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|