login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113369
Triangle, read by rows, given by the product Q^2*P^-1, where the triangular matrices involved are P = A113340 and Q = A113350.
1
1, 3, 1, 12, 5, 1, 69, 35, 7, 1, 560, 325, 70, 9, 1, 6059, 3880, 889, 117, 11, 1, 83215, 57560, 13853, 1881, 176, 13, 1, 1399161, 1030751, 258146, 36051, 3421, 247, 15, 1, 28020221, 21763632, 5633264, 805875, 77726, 5629, 330, 17, 1
OFFSET
0,2
COMMENTS
Matrix product Q^2*P^-1 = SHIFT_LEFT_UP(P). Compare to the matrix product Q^-1*P^2 = SHIFT_DOWN_RIGHT(Q), as given by triangle A113368.
EXAMPLE
The product Q^2*P^-1 forms a triangle that begins:
1;
3,1;
12,5,1;
69,35,7,1;
560,325,70,9,1;
6059,3880,889,117,11,1;
83215,57560,13853,1881,176,13,1;
1399161,1030751,258146,36051,3421,247,15,1;
28020221,21763632,5633264,805875,77726,5629,330,17,1; ...
Compare Q^2*P^-1 to P (A113340) which begins:
1;
1,1;
1,3,1;
1,12,5,1;
1,69,35,7,1;
1,560,325,70,9,1;
1,6059,3880,889,117,11,1;
1,83215,57560,13853,1881,176,13,1; ...
PROG
(PARI) T(n, k)=local(A, B); A=matrix(1, 1); A[1, 1]=1; for(m=2, n+2, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(2*j-1))[i-j+1, 1])); )); A=B); A[n+2, k+2]
CROSSREFS
Cf. A113340, A113350, A113368 (Q^-1*P^2).
Sequence in context: A226167 A185105 A122844 * A249253 A201638 A127894
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 12 2005
STATUS
approved