login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113368
Triangle, read by rows, given by the product Q^-1*P^2, where the triangular matrices involved are P = A113340 and Q = A113350.
1
1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 19, 22, 6, 1, 0, 113, 166, 51, 8, 1, 0, 966, 1671, 561, 92, 10, 1, 0, 10958, 21510, 7726, 1324, 145, 12, 1, 0, 156700, 341463, 129406, 23010, 2575, 210, 14, 1, 0, 2727794, 6496923, 2572892, 471724, 53935, 4434, 287, 16, 1
OFFSET
0,5
COMMENTS
Matrix product Q^-1*P^2 = SHIFT_DOWN_RIGHT(Q). Compare to the matrix product Q^2*P^-1 = SHIFT_LEFT_UP(P), as given by triangle A113369.
EXAMPLE
The product Q^-1*P^2 forms a triangle that begins:
1;
0,1;
0,2,1;
0,5,4,1;
0,19,22,6,1;
0,113,166,51,8,1;
0,966,1671,561,92,10,1;
0,10958,21510,7726,1324,145,12,1;
0,156700,341463,129406,23010,2575,210,14,1;
0,2727794,6496923,2572892,471724,53935,4434,287,16,1; ...
Compare Q^-1*P^2 to Q (A113350) which begins:
1;
2,1;
5,4,1;
19,22,6,1;
113,166,51,8,1;
966,1671,561,92,10,1;
10958,21510,7726,1324,145,12,1; ...
PROG
(PARI) T(n, k)=local(A, B); A=matrix(1, 1); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(i<3 || j==i || j>m-1, B[i, j]=1, if(j==1, B[i, 1]=1, B[i, j]=(A^(2*j-1))[i-j+1, 1])); )); A=B); (A^(2*k))[n-k+1, 1]
CROSSREFS
Cf. A113340, A113350, A113369 (Q^2*P^-1).
Sequence in context: A128899 A155887 A357583 * A066435 A261301 A171960
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 12 2005
STATUS
approved