OFFSET
0,5
COMMENTS
Let the sequence A(n) = [0/1, 2/1, 1/2, 3/2, 2/3, 4/3, ...] defined by a(2n)=n/(n+1) and a(2n+1)=(n+2)/(n+1). T(n,k) is the triangle read by rows given by A(n) DELTA A000007 where DELTA is the operator defined in A084938.
T is the convolution triangle of the Catalan numbers (see A357368). - Peter Luschny, Oct 19 2022
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
FORMULA
T(n,k) = A039598(n-1,k-1) for n >= 1, k >= 1; T(n,0)=0^n.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k >= 1, T(n,0)=0^n, T(n,k)=0 if k > n.
T(n,k) + T(n,k+1) = A039599(n,k). - Philippe Deléham, Sep 12 2007
EXAMPLE
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 5, 4, 1;
0, 14, 14, 6, 1;
0, 42, 48, 27, 8, 1;
0, 132, 165, 110, 44, 10, 1;
0, 429, 572, 429, 208, 65, 12, 1;
0, 1430, 2002, 1638, 910, 350, 90, 14, 1;
0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1;
0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1;
...
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, n -> binomial(2*n, n)/(n+1)); # Peter Luschny, Oct 19 2022
MATHEMATICA
T[n_, n_] := 1; T[_, 0] = 0; T[n_, k_] /; 0 < k < n := T[n, k] = T[n - 1, k - 1] + 2 T[n - 1, k] + T[n - 1, k + 1]; T[_, _] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)
PROG
(Sage)
@cached_function
def T(k, n):
if k==n: return 1
if k==0: return 0
return sum(catalan_number(i)*T(k-1, n-i) for i in (1..n-k+1))
A128899 = lambda n, k: T(k, n)
for n in (0..10): print([A128899(n, k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Apr 21 2007
EXTENSIONS
Typo in data corrected by Jean-François Alcover, Jun 14 2019
STATUS
approved