login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array (1,(1-2x-sqrt(1-4x))/(2x)).
8

%I #35 Oct 19 2022 11:04:13

%S 1,0,1,0,2,1,0,5,4,1,0,14,14,6,1,0,42,48,27,8,1,0,132,165,110,44,10,1,

%T 0,429,572,429,208,65,12,1,0,1430,2002,1638,910,350,90,14,1,0,4862,

%U 7072,6188,3808,1700,544,119,16,1,0,16796,25194,23256,15504,7752,2907,798,152,18,1

%N Riordan array (1,(1-2x-sqrt(1-4x))/(2x)).

%C Let the sequence A(n) = [0/1, 2/1, 1/2, 3/2, 2/3, 4/3, ...] defined by a(2n)=n/(n+1) and a(2n+1)=(n+2)/(n+1). T(n,k) is the triangle read by rows given by A(n) DELTA A000007 where DELTA is the operator defined in A084938.

%C T is the convolution triangle of the Catalan numbers (see A357368). - _Peter Luschny_, Oct 19 2022

%H Michael De Vlieger, <a href="/A128899/b128899.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened)

%H Paul Barry, <a href="https://arxiv.org/abs/1912.01124">A Note on Riordan Arrays with Catalan Halves</a>, arXiv:1912.01124 [math.CO], 2019.

%H Paul Barry, <a href="https://arxiv.org/abs/1912.11845">Chebyshev moments and Riordan involutions</a>, arXiv:1912.11845 [math.CO], 2019.

%F T(n,k) = A039598(n-1,k-1) for n >= 1, k >= 1; T(n,0)=0^n.

%F T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k >= 1, T(n,0)=0^n, T(n,k)=0 if k > n.

%F T(n,k) + T(n,k+1) = A039599(n,k). - _Philippe Deléham_, Sep 12 2007

%e Triangle begins:

%e 1;

%e 0, 1;

%e 0, 2, 1;

%e 0, 5, 4, 1;

%e 0, 14, 14, 6, 1;

%e 0, 42, 48, 27, 8, 1;

%e 0, 132, 165, 110, 44, 10, 1;

%e 0, 429, 572, 429, 208, 65, 12, 1;

%e 0, 1430, 2002, 1638, 910, 350, 90, 14, 1;

%e 0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1;

%e 0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1;

%e ...

%p # Uses function PMatrix from A357368.

%p PMatrix(10, n -> binomial(2*n,n)/(n+1)); # _Peter Luschny_, Oct 19 2022

%t T[n_, n_] := 1; T[_, 0] = 0; T[n_, k_] /; 0 < k < n := T[n, k] = T[n - 1, k - 1] + 2 T[n - 1, k] + T[n - 1, k + 1]; T[_, _] = 0;

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* _Jean-François Alcover_, Jun 14 2019 *)

%o (Sage)

%o @cached_function

%o def T(k,n):

%o if k==n: return 1

%o if k==0: return 0

%o return sum(catalan_number(i)*T(k-1,n-i) for i in (1..n-k+1))

%o A128899 = lambda n,k: T(k,n)

%o for n in (0..10): print([A128899(n,k) for k in (0..n)]) # _Peter Luschny_, Mar 12 2016

%Y Cf. A000108, A039598.

%K nonn,tabl

%O 0,5

%A _Philippe Deléham_, Apr 21 2007

%E Typo in data corrected by _Jean-François Alcover_, Jun 14 2019