login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128898 Primes of form 2^j + 2^k - 1 or 2^j + 2^k + 1. 1
2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 67, 71, 73, 79, 97, 127, 131, 137, 191, 193, 257, 263, 271, 383, 521, 577, 641, 769, 1031, 1033, 1039, 1087, 1151, 1153, 1279, 2053, 2063, 2081, 2111, 2113, 4099, 4111, 4127, 4129, 4159, 5119, 6143, 8191, 8209 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Union of A000668, A081091 and A239712. - Robert Israel, Jun 13 2018
LINKS
EXAMPLE
2^2 + 2^5 + 1 = 4 + 32 + 1 = 37 is prime, hence 37 is a term.
2^4 + 2^5 - 1 = 16 + 32 - 1 = 47 is prime, hence 47 is a term.
2^3 + 2^6 + 1 = 8 + 64 + 1 = 73 is prime, hence 73 is a term.
MAPLE
sort(convert(select(isprime, {2, seq(seq(seq(2^i+2^j+k, k=[-1, 1]), j=1..i), i=1..15)}), list)); # Robert Israel, Jun 13 2018
MATHEMATICA
lst = {}; Do[p = 2^a + 2^b; If[PrimeQ[p - 1], AppendTo[lst, p - 1]]; If[PrimeQ[p + 1], AppendTo[lst, p + 1]], {a, 0, 14}, {b, 0, a}]; Union@ lst (* Robert G. Wilson v *)
PROG
(PARI) {m=13; v=[]; for(j=0, m, for(k=j, m, if(isprime(p=2^j+2^k-1), v=concat(v, p)); if(isprime(p=2^j+2^k+1), v=concat(v, p)))); w=Vec(listsort(List(v), 1)); w} /* Klaus Brockhaus, Apr 22 2007 */
CROSSREFS
Cf. A000668 (Mersenne primes), A092506 (primes of form 2^n + 1), A070739 (primes of form 2^x+2^y+1), A081091, A239712.
Sequence in context: A216882 A216881 A042966 * A006514 A216286 A086983
KEYWORD
nonn
AUTHOR
J. M. Bergot, Apr 21 2007
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus and Robert G. Wilson v, Apr 22 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 12:51 EST 2024. Contains 370303 sequences. (Running on oeis4.)