login
A155887
Riordan array (1, (1/(1-x))c(x/(1-x))), c(x) the g.f. of A000108.
0
1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 15, 14, 6, 1, 0, 51, 50, 27, 8, 1, 0, 188, 187, 113, 44, 10, 1, 0, 731, 730, 468, 212, 65, 12, 1, 0, 2950, 2949, 1956, 970, 355, 90, 14, 1, 0, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 0, 51822, 51821, 35643, 19474, 8612, 3021
OFFSET
0,5
COMMENTS
Inverse of (1, x(1-x)/(1+x-x^2)). Row sums are A002212. Augmented version of A104259.
Triangle T(n,k) given by [0,F(3)/F(1),F(1)/F(3),F(5)/F(3),F(3)/F(5),F(7)/F(5),F(5)/F(7),...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938, F(n)=A000045(n) (Fibonacci numbers). - Philippe Deléham, Jan 31 2009
FORMULA
Riordan array (1, (1-sqrt((1-5x)/(1-x)))/(2x));
G.f.: 1/(1-xy/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-... (continued fraction).
EXAMPLE
Triangle begins
1;
0, 1;
0, 2, 1;
0, 5, 4, 1;
0, 15, 14, 6, 1;
0, 51, 50, 27, 8, 1;
0, 188, 187, 113, 44, 10, 1;
0, 731, 730, 468, 212, 65, 12, 1;
0, 2950, 2949, 1956, 970, 355, 90, 14, 1;
From Paul Barry, Sep 28 2009: (Start)
Production matrix is
0, 1,
0, 2, 1,
0, 1, 2, 1,
0, 1, 1, 2, 1,
0, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 1, 1, 1, 2, 1 (End)
CROSSREFS
Sequence in context: A245972 A088391 A128899 * A357583 A113368 A066435
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 29 2009
STATUS
approved