OFFSET
1,1
COMMENTS
From Farideh Firoozbakht: (Start)
We can easily show that:
(1) All terms have digits less than 3.
(2) For m > 1, an m-digit term of S has m-2 zeros, one 1 and one 2.
(3) For m > 1, the set A(m) of m-digit terms of S has 2m-2 members and A(m) = Join[Table[10^(m-1)+2*10^t,{t,0,m-2}],Table[2*10^(m-1)+10^t,{t,0,m-2}]].
(4) For each m, at index n = m^2 - m + 2, the number of digits of a(n) equals 1 + number of digits of a(n-1).
(End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
2, seq(op([seq(10^n+2*10^j, j=0..n-1), seq(2*10^n+10^j, j=0..n-1)]), n=1..6); # Robert Israel, Nov 10 2024
MATHEMATICA
(* Mmca code for generating all terms less than 10^m, m>1 (the first m^2-m+1 terms) - by Farideh Firoozbakht *) n=m; A[n_]:=Join[Table[10^(n-1)+2*10^t, {t, 0, n-2}], Table[2*10^(n-1)+10^t, {t, 0, n-2}]]; v={2}; Do[v=Join[v, A[k]], {k, 2, n}]; v
CROSSREFS
KEYWORD
base,nonn
AUTHOR
STATUS
approved