Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jun 13 2017 23:21:16
%S 1,0,1,0,2,1,0,5,4,1,0,19,22,6,1,0,113,166,51,8,1,0,966,1671,561,92,
%T 10,1,0,10958,21510,7726,1324,145,12,1,0,156700,341463,129406,23010,
%U 2575,210,14,1,0,2727794,6496923,2572892,471724,53935,4434,287,16,1
%N Triangle, read by rows, given by the product Q^-1*P^2, where the triangular matrices involved are P = A113340 and Q = A113350.
%C Matrix product Q^-1*P^2 = SHIFT_DOWN_RIGHT(Q). Compare to the matrix product Q^2*P^-1 = SHIFT_LEFT_UP(P), as given by triangle A113369.
%e The product Q^-1*P^2 forms a triangle that begins:
%e 1;
%e 0,1;
%e 0,2,1;
%e 0,5,4,1;
%e 0,19,22,6,1;
%e 0,113,166,51,8,1;
%e 0,966,1671,561,92,10,1;
%e 0,10958,21510,7726,1324,145,12,1;
%e 0,156700,341463,129406,23010,2575,210,14,1;
%e 0,2727794,6496923,2572892,471724,53935,4434,287,16,1; ...
%e Compare Q^-1*P^2 to Q (A113350) which begins:
%e 1;
%e 2,1;
%e 5,4,1;
%e 19,22,6,1;
%e 113,166,51,8,1;
%e 966,1671,561,92,10,1;
%e 10958,21510,7726,1324,145,12,1; ...
%o (PARI) T(n,k)=local(A,B);A=matrix(1,1);A[1,1]=1;for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(2*j-1))[i-j+1,1]));));A=B);(A^(2*k))[n-k+1,1]
%Y Cf. A113340, A113350, A113369 (Q^2*P^-1).
%K nonn,tabl
%O 0,5
%A _Paul D. Hanna_, Nov 12 2005