login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052759 E.g.f.: x^3*log(1/(1-x)). 6
0, 0, 0, 0, 24, 60, 240, 1260, 8064, 60480, 518400, 4989600, 53222400, 622702080, 7925299200, 108972864000, 1609445376000, 25406244864000, 426824913715200, 7602818775552000, 143111882833920000, 2838385676206080000, 59157933040926720000, 1292600836944248832000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Previous name was: A simple grammar.

LINKS

Amiram Eldar, Table of n, a(n) for n = 0..450

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 716.

FORMULA

E.g.f.: x^3*log(-1/(-1+x)).

Recurrence: a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-n^2+2*n+3)*a(n)+(-2+n)*a(n+1) = 0.

a(n) = n! / (n-3) (n > 3). - Olivier Gérard, Jun 13 2001

Sum_{n>=4} 1/a(n) = 11/2 - 2*e. - Amiram Eldar, Oct 07 2020

Sum_{n>=4} (-1)^n/a(n) = 3/2 - 4/e. - Amiram Eldar, Aug 20 2022

MAPLE

spec := [S, {B=Cycle(Z), S=Prod(B, Z, Z, Z)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

Join[{0, 0, 0, 0}, Table[n!/(n - 3), {n, 4, 30}]] (* Vincenzo Librandi, Jul 08 2015 *)

PROG

(PARI) a(n) = if (n <= 3, 0, n!/(n-3)); \\ Michel Marcus, Jul 08 2015

(Magma) [n le 3 select 0 else Factorial(n)/(n-3): n in [0..30]]; // Vincenzo Librandi, Jul 08 2015

CROSSREFS

Sequence in context: A242844 A185445 A321840 * A356911 A353229 A351504

Adjacent sequences: A052756 A052757 A052758 * A052760 A052761 A052762

KEYWORD

nonn,easy

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)