login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162989
Lesser of twin primes p such that none of p-1, p+1 and p+3 are cubefree.
2
69497, 416501, 474497, 632501, 960497, 1068497, 1226501, 1402871, 1464101, 1635497, 1716497, 1919429, 1986497, 2114249, 2144501, 2283497, 2645189, 3120497, 3174497, 3232751, 3305501, 3332501, 3525497, 3637169, 3998537
OFFSET
1,1
LINKS
EXAMPLE
p=69497 and p+2=69499 are twin primes, also:
p-1=69496=2^3*7*17*73
p+1=69498=2*3^5*11*13
p+3=69500=2^2*5^3*139.
MAPLE
cf:= proc(n) local F;
F:= ifactors(n)[2];
max(map(t->t[2], F))>=3
end proc:
select(t -> isprime(t) and isprime(t+2) and cf(t-1) and cf(t+1) and cf(t+3), [seq(i, i=5..10^7, 6)]); # Robert Israel, Nov 24 2020
MATHEMATICA
f[m_]:=Max[Last/@FactorInteger[m]]>=3;
S={}; Do[If[PrimeQ[p=6x-1]&&PrimeQ[p+2]&&
f[p-1]==f[p+1]==f[p+3]==True, AppendTo[S, p]], {x, 1, 10^6}]; S
CROSSREFS
Cf. A046099.
See A162874 for another version.
Sequence in context: A205758 A205588 A162874 * A052195 A089218 A224324
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 19 2009
EXTENSIONS
Definition clarified by Robert Israel, Nov 24 2020
STATUS
approved