login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052195
Primes p such that p, p+30, p+60 are consecutive primes.
11
69593, 110651, 134609, 228647, 237791, 250889, 303157, 318919, 396449, 421913, 498271, 507431, 535243, 554317, 629623, 642427, 642457, 668243, 692161, 716003, 729791, 780523, 782581, 790897, 801217, 825131, 829289, 847393, 892291, 902873, 940097, 942449, 963913, 995243, 1027067
OFFSET
1,1
FORMULA
A052195 = { A124596(n) | A124596(n+1) = A124596(n) + 30 }. - M. F. Hasler, Jan 02 2020
EXAMPLE
69593, 69623, 69653 are consecutive primes with equal distance d=30.
110651, 110681 and 110711 are consecutive primes with equal distance d=30.
MATHEMATICA
Select[Partition[Prime[Range[80000]], 3, 1], Differences[#]=={30, 30}&][[All, 1]] (* Harvey P. Dale, May 03 2018 *)
PROG
(PARI) vecextract(A124596, select(t->t==30, A124596[^1]-A124596[^-1], 1)) \\ Terms of A124596 with indices of first differences of 30. Gives a(1..230) from A124596(1..10^4). - M. F. Hasler, Jan 02 2020
CROSSREFS
Cf. A047948 (analog for gap 6), A052188 (gap 12), A052189 (gap 18), A052190 (gap 24), A053075 (a(n) + 30).
Cf. A001223 (gaps), A124596 (primes followed by gap 30), A052243 (quadruplets with gap 30), A033451 (quadruplets with gap 6).
Sequence in context: A205588 A162874 A162989 * A089218 A224324 A053075
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 28 2000
STATUS
approved