The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052195 Primes p such that p, p+30, p+60 are consecutive primes. 11
 69593, 110651, 134609, 228647, 237791, 250889, 303157, 318919, 396449, 421913, 498271, 507431, 535243, 554317, 629623, 642427, 642457, 668243, 692161, 716003, 729791, 780523, 782581, 790897, 801217, 825131, 829289, 847393, 892291, 902873, 940097, 942449, 963913, 995243, 1027067 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Zak Seidov, Table of n, a(n) for n = 1..1000 OEIS wiki, Consecutive primes in arithmetic progression: CPAP with given gap, updated Jan. 2020 FORMULA A052195 = { A124596(n) | A124596(n+1) = A124596(n) + 30 }. - M. F. Hasler, Jan 02 2020 EXAMPLE 69593, 69623, 69653 are consecutive primes with equal distance d=30. 110651, 110681 and 110711 are consecutive primes with equal distance d=30. MATHEMATICA Select[Partition[Prime[Range[80000]], 3, 1], Differences[#]=={30, 30}&][[All, 1]] (* Harvey P. Dale, May 03 2018 *) PROG (PARI) vecextract(A124596, select(t->t==30, A124596[^1]-A124596[^-1], 1)) \\ Terms of A124596 with indices of first differences of 30. Gives a(1..230) from A124596(1..10^4). - M. F. Hasler, Jan 02 2020 CROSSREFS Cf. A047948 (analog for gap 6), A052188 (gap 12), A052189 (gap 18), A052190 (gap 24), A053075 (a(n) + 30). Cf. A001223 (gaps), A124596 (primes followed by gap 30),  A052243 (quadruplets with gap 30), A033451 (quadruplets with gap 6). Sequence in context: A205588 A162874 A162989 * A089218 A224324 A053075 Adjacent sequences:  A052192 A052193 A052194 * A052196 A052197 A052198 KEYWORD nonn AUTHOR Labos Elemer, Jan 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 19:05 EDT 2021. Contains 346441 sequences. (Running on oeis4.)