|
|
A052196
|
|
Largest natural number less than 10^66 requiring exactly n letters in English.
|
|
3
|
|
|
10, 9, 60, 90, 70, 66, 96, 10000000000, 10000000000000, 10000000000000000000000000000000000, 10000000000000000000000000, 10000000000000000000000000000000000000, 10000000000000000000000000000000000000000000000000000000000000000, 9000000000000000000000000000000000000000000000000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,1
|
|
COMMENTS
|
This uses US nomenclature: no conjunctive 'and'; 10^10 = 'ten billion'.
This is the 'largest' counterpart to A080777, which gives the smallest positive integer with exactly n letters.
Because of the definition's size limitation, a(758) will be the largest term in this finite sequence; a(758) = 878878878878878878878878878878878878878878878878878878878878878878.
|
|
LINKS
|
Hans Havermann, Table of n, a(n) for n = 3..758
Hans Havermann, Growth illustration for this sequence
Hans Havermann, Define, divide, and conquer
Pegg, E. Jr. and Weisstein, E. W. Mathematica's Google Aptitude: problem #20 MathWorld Headline news, Oct 13, 2004.
|
|
EXAMPLE
|
The largest numbers (<10^66) using 10 to 15 letters:
10: 10*10^9 = ten billion
11: 10*10^12 = ten trillion
12: 10*10^33 = ten decillion
13: 10*10^24 = ten septillion
14: 10*10^36 = ten undecillion
15: 10*10^63 = ten vigintillion
|
|
MATHEMATICA
|
k=100; lst=StringLength/@StringReplace[IntegerName/@Range[k],
{"-"-> "", " "-> ""}]; max[n_]:=Last[Position[lst, n]];
max/@Range[3, 9]//Flatten (* Ivan N. Ianakiev, Oct 07 2015 *)
|
|
CROSSREFS
|
Cf. A001166, A080777.
Sequence in context: A237114 A217412 A241285 * A243035 A070252 A038311
Adjacent sequences: A052193 A052194 A052195 * A052197 A052198 A052199
|
|
KEYWORD
|
nonn,word,fini,full
|
|
AUTHOR
|
Henry Bottomley, Jan 28 2000
|
|
EXTENSIONS
|
a(11) from Brian Galebach, Feb 06 2004
Edited and extended by Hans Havermann, Nov 08 2013
|
|
STATUS
|
approved
|
|
|
|