login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of expansion for Debye function for n=1: D(1,x).
10

%I #15 May 01 2023 10:03:15

%S 1,4,36,1,3600,1,211680,1,10886400,1,526901760,1,16999766784000,1,

%T 1120863744000,1,181400588328960000,1,97072790126247936000,1,

%U 16860010916664115200000,1,324325300906011525120000,1

%N Denominators of expansion for Debye function for n=1: D(1,x).

%C Numerators are found under A120082.

%H G. C. Greubel, <a href="/A120083/b120083.txt">Table of n, a(n) for n = 0..447</a>

%F a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - x/4 + Sum_{k >= 0}(B(2*k)/((2*k+1)*(2*k)!))*x^(2*k) ), |x|<2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).

%F a(n) = denominator(B(n)/(n+1)!), n >= 0. See the comment on the e.g.f. D(1,x) in A120082. - _Wolfdieter Lang_, Jul 15 2013

%t Table[Denominator[BernoulliB[n]/(n+1)!], {n,0,50}] (* _G. C. Greubel_, May 01 2023 *)

%o (Magma) [Denominator(Bernoulli(n)/Factorial(n+1)): n in [0..50]]; // _G. C. Greubel_, May 01 2023

%o (SageMath)

%o def A120083(n): return denominator(bernoulli(n)/factorial(n+1))

%o [A120083(n) for n in range(51)] # _G. C. Greubel_, May 01 2023

%Y Cf. A120082.

%K nonn,easy,frac

%O 0,2

%A _Wolfdieter Lang_, Jul 20 2006