login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227545 The number of idempotents in the Brauer monoid on [1..n]. 4
1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016, 38350749144768938770432 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Brauer monoid is the set of partitions on [1..2n] with classes of size 2 and multiplication inherited from the partition monoid, which contains the Brauer monoid as a subsemigroup. The multiplication is defined in Halverson & Ram.

These numbers were produced using the Semigroups (2.0) package for GAP 4.7.

No general formula is known for the number of idempotents in the Brauer monoid.

LINKS

Table of n, a(n) for n=0..22.

I. Dolinka, J. East, A. Evangelou, D. FitzGerald, N. Ham, et al., Enumeration of idempotents in diagram semigroups and algebras, arXiv preprint arXiv:1408.2021 [math.GR], 2014.

T. Halverson, A. Ram, Partition algebras, European J. Combin. 26 (6) (2005) 869-921.

MATHEMATICA

nn = 44; ee = Table[0, nn+1]; ee[[1]] = 1;

e[n_] := e[n] = ee[[n+1]];

For[n = 1, n <= nn, n++, ee[[n+1]] = Sum[Binomial[n-1, 2i-1] (2i-1)! e[n-2i], {i, 1, n/2}] + Sum[Binomial[n-1, 2i] (2i+1)! e[n-2i-1], {i, 0, (n-1)/2}]

];

ee (* Jean-Fran├žois Alcover, Jul 21 2018, after Joerg Arndt *)

PROG

(GAP) for i in [1..11] do

  Print(NrIdempotents(BrauerMonoid(i)), "\n");

od;

(PARI)

N=44; E=vector(N+1); E[1]=1;

e(n)=E[n+1];

{ for (n=1, N,

E[n+1]=

     sum(i=1, n\2, binomial(n-1, 2*i-1)*(2*i-1)!*e(n-2*i)) +

     sum(i=0, (n-1)\2, binomial(n-1, 2*i)*(2*i+1)!*e(n-2*i-1))

); }

print(E);

\\ Joerg Arndt, Oct 12 2016

CROSSREFS

Cf. A023997, A225797, A277379.

Sequence in context: A318694 A281433 A277379 * A127113 A051540 A272135

Adjacent sequences:  A227542 A227543 A227544 * A227546 A227547 A227548

KEYWORD

nonn

AUTHOR

James Mitchell, Jul 15 2013

EXTENSIONS

Terms a(13)-a(17) from James East, Dec 23 2013

More terms from Joerg Arndt, Oct 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 02:41 EDT 2018. Contains 316405 sequences. (Running on oeis4.)