Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 10 2020 09:26:57
%S 1,-1,-2,-3,-5,-10,-27,-91,-350,-1459,-6466,-30258,-149051,-771157,
%T -4181702,-23718221,-140437759,-866481074,-5561061327,-37066185842,
%U -256190732502,-1833581728979,-13571059095383,-103744579461855,-818183156375886,-6649600332967494,-55635988924348030
%N Expansion of Product_{k>=1} (1 - x^k / (1 - k*x)).
%F G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} 1 / (d * (1 - k/d * x)^d)).
%t m = 26; CoefficientList[Series[Product[(1 - x^k/(1 - k*x)), {k, 1, m}], {x, 0, m}], x] (* _Amiram Eldar_, Aug 10 2020 *)
%o (PARI) N=40; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1-k*x)))
%o (PARI) N=40; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, 1/(d*(1-k/d*x)^d)))))
%Y Convolution inverse of A336990.
%Y Cf. A307599, A336989.
%K sign
%O 0,3
%A _Seiichi Manyama_, Aug 10 2020