The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278614 Sum of terms in level n of TRIP -  Stern sequence associated with permutation triple (e,12,12). 5
 3, 8, 22, 62, 176, 502, 1434, 4100, 11726, 33542, 95952, 274494, 785266, 2246484, 6426742, 18385646, 52597744, 150471910, 430470890, 1231493604 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 17 Sep 2015. FORMULA Conjecture: G.f.: ( 3-x-5*x^2 ) / ( 1-3*x-x^2+4*x^3 ). - R. J. Mathar, Dec 02 2016 MAPLE A278614T := proc(n)     option remember;     local an, nrecur ;     if n = 1 then         [1, 1, 1] ;     else         an := procname(floor(n/2)) ;         if type(n, 'even') then             # apply F0             [op(3, an), op(2, an), op(1, an)+ op(3, an)] ;         else             # apply F1             [op(2, an), op(1, an), op(1, an)+op(3, an)] ;         end if;     end if; end proc; A278614 := proc(n)     local a, l;     a := 0 ;     for l from 2^n to 2^(n+1)-1 do         L := A278614T(l) ;         a := a+ L[1]+L[2]+L[3] ;     end do:     a ; end proc: # R. J. Mathar, Dec 02 2016 MATHEMATICA A278614T[n_] := A278614T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[3]], an[[2]], an[[1]] + an[[3]]}, {an[[2]], an[[1]], an[[1]] + an[[3]]}]]]; a[n_] := a[n] = Module[{a = 0, l, L}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, L = A278614T[l]; a = a + L[[1]] + L[[2]] + L[[3]]]; a]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 20 2017, after R. J. Mathar *) CROSSREFS Cf. A278612, A278613, A278615, A278616. Sequence in context: A018040 A018041 A073357 * A188464 A298260 A336990 Adjacent sequences:  A278611 A278612 A278613 * A278615 A278616 A278617 KEYWORD nonn,more AUTHOR Ilya Amburg, Nov 23 2016 EXTENSIONS More terms from R. J. Mathar, Dec 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 11:49 EDT 2022. Contains 356189 sequences. (Running on oeis4.)