login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278615
Sum of terms in level n of TRIP - Stern sequence associated with permutation triple (e,13,23).
5
3, 8, 21, 56, 148, 394, 1044, 2776, 7364, 19568, 51936, 137960, 366256, 972736, 2582736, 6858880, 18212288, 48363680, 128423232, 341027456, 905565760, 2404701952, 6385502208, 16956417664, 45026632448, 119565922304, 317499868416, 843103631360, 2238811202560, 5945037720064, 15786698462208, 41920680589312, 111317928707072
OFFSET
0,1
LINKS
I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 17 Sep 2015.
FORMULA
G.f.: ( 3+2*x-7*x^2 ) / ( 1-2*x-4*x^2+6*x^3 ). - R. J. Mathar, Dec 02 2016
a(n) = A271893(n)+A271894(n)+A271895(n). - R. J. Mathar, Dec 02 2016
MAPLE
A278615T := proc(n)
option remember;
local an, nrecur ;
if n = 1 then
[1, 1, 1] ;
else
an := procname(floor(n/2)) ;
if type(n, 'even') then
# apply F0
[op(1, an)+ op(3, an), op(3, an), op(2, an)] ;
else
# apply F1
[op(1, an), op(1, an)+ op(3, an), op(2, an)] ;
end if;
end if;
end proc;
A278615 := proc(n)
local a, l;
a := 0 ;
for l from 2^n to 2^(n+1)-1 do
L := A278615T(l) ;
a := a+ L[1]+L[2]+L[3] ;
end do:
a ;
end proc: # R. J. Mathar, Dec 02 2016
MATHEMATICA
LinearRecurrence[{2, 4, -6}, {3, 8, 21}, 20] (* Jean-François Alcover, Nov 22 2017, after R. J. Mathar's g.f. *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Amburg, Nov 23 2016
EXTENSIONS
More terms from R. J. Mathar, Dec 02 2016
STATUS
approved