login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336987
Decimal expansion of Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n).
0
3, 2, 2, 1, 9, 4, 1, 9, 5, 8, 4, 2, 4, 3, 3, 6, 5, 1, 5, 2, 4, 3, 5, 9, 3, 6, 1, 1, 7, 7, 2, 2, 8, 8, 4, 3, 9, 9, 1, 2, 3, 9, 0, 2, 7, 3, 6, 7, 0, 7, 8, 1, 7, 7, 8, 5, 7, 9, 3, 4, 2, 6, 1, 0, 3, 8, 2, 9, 5, 4, 1, 8, 3, 2, 7, 5, 3, 5, 9, 7, 1, 0, 4, 3, 4, 7, 7, 8, 3, 1, 7, 0, 6, 5, 9, 1, 1, 3, 9, 7
OFFSET
2,1
COMMENTS
The series u(n) = sqrt(n)^log(n)/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo.
REFERENCES
J. Moisan & A. Vernotte, Analyse, Topologie et Séries, Exercices corrigés de Mathématiques Spéciales, Ellipses, 1991, Exercice B-1 a-3 pp. 70, 87-88.
FORMULA
Equals Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n).
EXAMPLE
32.219419584243365152435936117722884...
MAPLE
evalf(sum(sqrt(n)^log(n)/log(n)^sqrt(n), n=2..infinity), 120);
PROG
(PARI) default(realprecision, 100); sumpos(n=2, sqrt(n)^log(n)/log(n)^sqrt(n)) \\ Michel Marcus, Aug 10 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Aug 10 2020
EXTENSIONS
a(37)-a(101) from Robert Price, Aug 21 2020
STATUS
approved