OFFSET
2,1
COMMENTS
The series u(n) = sqrt(n)^log(n)/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo.
REFERENCES
J. Moisan & A. Vernotte, Analyse, Topologie et Séries, Exercices corrigés de Mathématiques Spéciales, Ellipses, 1991, Exercice B-1 a-3 pp. 70, 87-88.
FORMULA
Equals Sum_{n>=2} sqrt(n)^log(n)/log(n)^sqrt(n).
EXAMPLE
32.219419584243365152435936117722884...
MAPLE
evalf(sum(sqrt(n)^log(n)/log(n)^sqrt(n), n=2..infinity), 120);
PROG
(PARI) default(realprecision, 100); sumpos(n=2, sqrt(n)^log(n)/log(n)^sqrt(n)) \\ Michel Marcus, Aug 10 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Aug 10 2020
EXTENSIONS
a(37)-a(101) from Robert Price, Aug 21 2020
STATUS
approved