login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336984
Colombian numbers that are also Bogotá numbers.
4
1, 9, 42, 64, 75, 255, 312, 378, 525, 648, 738, 1111, 1278, 2224, 2448, 2784, 2817, 3504, 3864, 3875, 4977, 5238, 5495, 5888, 8992, 9712, 10368, 11358, 11817, 12348, 12875, 13136, 13584, 13775, 13832, 13944, 15351, 15384, 15744, 15900, 16912, 17768, 18095, 19344, 20448
OFFSET
1,2
COMMENTS
Equivalently, numbers m that are not of the form k + sum of digits of k for any k (A003052), but are of the form q * product of digits of q for some q (A336826).
Repunits are trivially Bogotá numbers but the indices m of the repunits R_m that are Colombian numbers are in A337208. No known prime belongs to this sequence (see A004023).
A336983, A336985, A336986 and this sequence form a partition of the set of positive integers N*.
LINKS
EXAMPLE
42 = 21 * (2*1) is a Bogotá number and there does not exist m < 42 such that 42 = m + sum of digits of m, hence 42 is a Colombian number and 42 is a term.
56 = 14 * (1*4) is a Bogotá number but as 56 = 46 + (4+6), 56 is not a Colombian number, hence 56 is not a term.
648 = 36 * (3*6) = 81 * (8*1) but there does not exist m < 648 such that 648 = m + sum of digits of m, hence 648 is a Colombian number, so 648 is a term that has two different representations as the product of a number and of its decimal digits.
MATHEMATICA
m = 21000; Intersection[Complement[Range[m], Select[Union[Table[n + Plus @@ IntegerDigits[n], {n, 1, m}]], # <= m &]], Select[Union[Table[n * Times @@ IntegerDigits[n], {n, 1, m}]], # <= m &]] (* Amiram Eldar, Aug 22 2020 *)
PROG
(PARI) lista(nn) = Vec(setintersect(setminus([1..nn], Set(vector(nn, k, k+sumdigits(k)))), Set(vector(nn, k, k*vecprod(digits(k)))))); \\ Michel Marcus, Aug 23 2020
CROSSREFS
Intersection of A003052 and A336826.
Cf. A336983 (Bogotá and not Colombian), A336985 (Colombian not Bogotá), A336986 (not Colombian and not Bogotá).
Sequence in context: A065792 A118546 A334147 * A075233 A062783 A172464
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Aug 22 2020
STATUS
approved