The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334147 Numbers which can be written uniquely as x^4 + y*(2y+1) + z*(3z+1), where x,y,z are integers with x>=0. 1
 0, 9, 42, 57, 127, 218, 243, 272, 412, 467, 554, 555, 571, 724, 909, 1292, 1385, 1448, 1557, 1604, 1897, 2062, 2410, 3025, 3507, 4328, 5907, 8182, 9018, 14654, 18628, 25479, 25713, 76322, 80488, 152177, 1277405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence consists of those n with A334138(n) = 1. Conjecture: The sequence has no terms greater than a(37) = 1277405. We have noted that A334138(n) > 1 for all 1277405 < n <= 5*10^6. LINKS EXAMPLE a(10) = 467 with 467 = 0^4 + 15*(2*15+1) + (-1)*(3*(-1)+1). a(25) = 3507 with 3507 = 6^4 + 33*(2*33+1) + 0*(3*0+1). a(36) = 152177 with 152177 = 9^4 + (-266)*(2*(-266)+1) + 38*(3*38+1). a(37) = 1277405 with 1277405 = 22^4 + (-655)*(2*(-655)+1) + (-249)*(3*(-249)+1). MATHEMATICA QQ[n_]:=QQ[n]=IntegerQ[Sqrt[12n+1]]; m=0; Do[r=0; Do[If[QQ[n-x^4-y(2y+1)], r=r+1; If[r>1, Goto[aa]]], {x, 0, n^(1/4)}, {y, -Floor[(Sqrt[8(n-x^4)+1]+1)/4], (Sqrt[8(n-x^4)+1]-1)/4}]; If[r==1, m=m+1; Print[m, " ", n]]; Label[aa], {n, 0, 152177}] CROSSREFS Cf. A000217, A001318, A270566, A334138. Sequence in context: A050635 A065792 A118546 * A336984 A075233 A062783 Adjacent sequences:  A334144 A334145 A334146 * A334148 A334149 A334150 KEYWORD nonn AUTHOR Zhi-Wei Sun, Apr 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 21:33 EDT 2021. Contains 346377 sequences. (Running on oeis4.)