OFFSET
0,1
COMMENTS
The other two roots are w1*phi^(1/3) - w2*(-1 + phi)^(1/3) = -0.16109267... + 1.75438095...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1; phi = A001622.
The hyperbolic function version is -sinh((1/3)*arcsinh(1/2)) + sqrt(3)*cosh((1/3)*arcsinh(1/2))*i, and its complex conjugate.
FORMULA
r = phi^(1/3) - phi^(-1/3), with phi = A001622.
r = phi^(1/3) - (-1 + phi)^(1/3).
r = 2*sinh((1/3)*arcsinh(1/2)).
EXAMPLE
0.32218535462608559291147071070403198493164438289958400917884391190429676...
MAPLE
h := ((1 + sqrt(5))/2)^(1/3): evalf(h - 1/h, 90); # Peter Luschny, Sep 24 2022
MATHEMATICA
RealDigits[Subtract @@ Surd[GoldenRatio, {3, -3}], 10, 100][[1]] (* Amiram Eldar, Sep 21 2022 *)
RealDigits[Root[x^3+3x-1, 1], 10, 120][[1]] (* Harvey P. Dale, Oct 09 2023 *)
PROG
(PARI) 2*sinh((1/3)*asinh(1/2)) \\ Michel Marcus, Sep 23 2022
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Sep 21 2022
STATUS
approved