OFFSET
1,3
COMMENTS
The complex roots are (w1*(4 + (2/9)*sqrt(318))^(1/3) + w2*(4 - (2/9)*sqrt(318))^(1/3))/2 = -0.5826865215... + 0.7201185646...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp((2/3)*Pi*i) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1.
Using hyperbolic functions these roots are (1/6)*sqrt(6)*(-cosh((1/3)*arccosh(3*sqrt(6))) + sqrt(3)*sinh((1/3)*arccosh(3*sqrt(6)))*i), and its complex conjugate.
FORMULA
r = ((108 + 6*sqrt(318))^(1/3) + 6*(108 + 6*sqrt(318))^(-1/3))/6.
r = (3*(4 + (2/9)*sqrt(318))^(1/3) + 2*(4 + (2/9)*sqrt(318))^(-1/3))/6.
r = ((4 + (2/9)*sqrt(318))^(1/3) + (4 - (2/9)*sqrt(318))^(1/3))/2.
r = (1/3)*sqrt(6)*cosh((1/3)*arccosh(3*sqrt(6))).
EXAMPLE
1.165373043062414716956358434517798082542887318820048613344266311648448471...
MATHEMATICA
RealDigits[x /. FindRoot[2*x^3 - x - 2, {x, 1}, WorkingPrecision -> 100]][[1]] (* Amiram Eldar, Sep 29 2022 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Sep 29 2022
STATUS
approved