login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098054
Let M={{0,1},{1,1}}, M0=MatrixPower[(M-IdentityMatrix[2]),2], Det[M0]; a[n_]:=M0.a[n-1]; a[0]:={{0,1},{1,1}};
0
0, 1, 1, 1, 1, 1, 1, 0, 3, 2, 2, 1, 8, 5, 5, 3, 21, 13, 13, 8, 55, 34, 34, 21, 144, 89, 89, 55, 377, 233, 233, 144, 987, 610, 610, 377, 2584, 1597, 1597, 987, 6765, 4181, 4181, 2584, 17711, 10946, 10946, 6765, 46368, 28657, 28657, 17711, 121393, 75025, 75025
OFFSET
0,9
COMMENTS
2 X 2 matrix sequence of square (M-I)^2 on Fibonacci generator matrix.
MATHEMATICA
(* 2 X 2 matrix sequence*) digits=50 M={{0, 1}, {1, 1}} M0=MatrixPower[(M-IdentityMatrix[2]), 2] Det[M0] A[n_]:=M0.A[n-1]; A[0]:={{0, 1}, {1, 1}}; (* flattened sequence of 2 X 2 matrices made with an alternating recurrence*) b=Flatten[Table[Abs[A[n]], {n, 0, digits}]] ListPlot[b, PlotJoined->True]
CROSSREFS
Sequence in context: A130195 A071048 A357104 * A336987 A075801 A243160
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 11 2004
STATUS
approved