login
A098054
Let M={{0,1},{1,1}}, M0=MatrixPower[(M-IdentityMatrix[2]),2], Det[M0]; a[n_]:=M0.a[n-1]; a[0]:={{0,1},{1,1}};
0
0, 1, 1, 1, 1, 1, 1, 0, 3, 2, 2, 1, 8, 5, 5, 3, 21, 13, 13, 8, 55, 34, 34, 21, 144, 89, 89, 55, 377, 233, 233, 144, 987, 610, 610, 377, 2584, 1597, 1597, 987, 6765, 4181, 4181, 2584, 17711, 10946, 10946, 6765, 46368, 28657, 28657, 17711, 121393, 75025, 75025
OFFSET
0,9
COMMENTS
2 X 2 matrix sequence of square (M-I)^2 on Fibonacci generator matrix.
MATHEMATICA
(* 2 X 2 matrix sequence*) digits=50 M={{0, 1}, {1, 1}} M0=MatrixPower[(M-IdentityMatrix[2]), 2] Det[M0] A[n_]:=M0.A[n-1]; A[0]:={{0, 1}, {1, 1}}; (* flattened sequence of 2 X 2 matrices made with an alternating recurrence*) b=Flatten[Table[Abs[A[n]], {n, 0, digits}]] ListPlot[b, PlotJoined->True]
CROSSREFS
Sequence in context: A130195 A071048 A357104 * A336987 A075801 A243160
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 11 2004
STATUS
approved