login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098055
Let M={{0,1,0},{0,0,1},{1,1,0}}, M0=MatrixPower[(M-IdentityMatrix[3]),2], Det[M0], a[n_]:=M0.a[n-1]; a[0]:={{0,1,1},{1,1,1},{1,1,2}}.
0
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 3, 4, 3, 4, 3, 4, 3, 1, 10, 14, 11, 14, 11, 4, 11, 4, 3, 49, 40, 16, 40, 16, 9, 16, 9, 24, 145, 63, 26, 63, 26, 82, 26, 82, 89, 245, 71, 279, 71, 279, 316, 279, 316, 208, 176, 945, 1119, 945, 1119, 769, 1119, 769, 174, 3185
OFFSET
0,9
COMMENTS
3 X 3 matrix from the minimal Pisot generator matrix by: (M-I)^2.
MATHEMATICA
(*square matrix 3 X 3 Markov sequence*) Clear[x, M, A] digits=21 M={{0, 1, 0}, {0, 0, 1}, {1, 1, 0}} M0=MatrixPower[(M-IdentityMatrix[3]), 2] Det[M0] A[n_]:=M0.A[n-1]; A[0]:={{0, 1, 1}, {1, 1, 1}, {1, 1, 2}}; (* flattened sequence of 3 X 3 matrices made with an alternating recurrence*) b=Flatten[Table[Abs[A[n]], {n, 0, digits}]] ListPlot[b, PlotJoined->True]
CROSSREFS
Sequence in context: A355826 A355819 A330262 * A344739 A092111 A330167
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 11 2004
STATUS
approved