login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092111
a(n) = n+1 minus the greatest number of 1's in the binary representations of primes between 2^n and 2^(n+1).
2
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,14
COMMENTS
0's occur only at Mersenne prime exponents (A000043) - 1, twos are in A092112, threes do not appear < 504.
a(n) <= 2 for n <= 2000. - Robert Israel, Mar 05 2020
LINKS
FORMULA
a(n) = n+1 - A091937(n).
MAPLE
f:= proc(n) local t, j, k;
t:= 2^(n+1)-1;
if isprime(t) then return 0 fi;
for j from 1 to n-1 do if isprime(t-2^j) then return 1 fi od;
for j from 1 to n-2 do for k from j+1 to n-1 do
if isprime(t-2^j-2^k) then return 2 fi od od;
FAIL
end proc:
map(f, [$1..200]); # Robert Israel, Mar 05 2020
MATHEMATICA
Compute the second line of the Mathematica code for A091938, then (Table[n + 1, {n, 105}]) - (Count[ IntegerDigits[ #, 2], 1] & /@ Table[ f[n], {n, 105}])
CROSSREFS
Sequence in context: A330262 A098055 A344739 * A330167 A307776 A341027
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Feb 20 2004
STATUS
approved