The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098055 Let M={{0,1,0},{0,0,1},{1,1,0}}, M0=MatrixPower[(M-IdentityMatrix[3]),2], Det[M0], a[n_]:=M0.a[n-1]; a[0]:={{0,1,1},{1,1,1},{1,1,2}}. 0

%I

%S 0,1,1,1,1,1,1,1,2,1,0,1,0,1,1,1,1,1,0,3,4,3,4,3,4,3,1,10,14,11,14,11,

%T 4,11,4,3,49,40,16,40,16,9,16,9,24,145,63,26,63,26,82,26,82,89,245,71,

%U 279,71,279,316,279,316,208,176,945,1119,945,1119,769,1119,769,174,3185

%N Let M={{0,1,0},{0,0,1},{1,1,0}}, M0=MatrixPower[(M-IdentityMatrix[3]),2], Det[M0], a[n_]:=M0.a[n-1]; a[0]:={{0,1,1},{1,1,1},{1,1,2}}.

%C 3 X 3 matrix from the minimal Pisot generator matrix by: (M-I)^2.

%t (*square matrix 3 X 3 Markov sequence*) Clear[x, M, A] digits=21 M={{0, 1, 0}, {0, 0, 1}, {1, 1, 0}} M0=MatrixPower[(M-IdentityMatrix[3]), 2] Det[M0] A[n_]:=M0.A[n-1]; A[0]:={{0, 1, 1}, {1, 1, 1}, {1, 1, 2}}; (* flattened sequence of 3 X 3 matrices made with an alternating recurrence*) b=Flatten[Table[Abs[A[n]], {n, 0, digits}]] ListPlot[b, PlotJoined->True]

%K nonn

%O 0,9

%A _Roger L. Bagula_, Sep 11 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 21:56 EDT 2021. Contains 345402 sequences. (Running on oeis4.)