login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272694
a(n) = (c(n)+f(c(n)))/2, where c() = A272693() and f(k) = sign(k)*(k mod 2).
1
0, -1, -1, -3, -2, -2, -2, 0, 3, 1, -2, -3, -4, -3, 1, 5, 2, -3, -5, -5, -2, 3, 6, 3, -5, -11, -6, 3, 7, 5, -3, -10, -9, -2, 8, 8, 1, -8, -11, -6, 6, 10, 5, -6, -13, -9, 1, 11, 8, -3, -11, -11, -2, 9, 12, 3, -11, -17, -8, 9, 18, 9, -11, -23, -12, 9, 19, 11, -9, -22, -15, 4, 20, 14, -6, -20, -17, 2, 19, 17
OFFSET
0,4
COMMENTS
Created in an attempt to simplify the definition of A108618.
LINKS
MAPLE
M:=1000;
a:=Array(0..M, 0); # A108618 (with different offset)
b:=Array(0..M, 0); # A108619 (with different offset)
c:=Array(0..M, 0); # A272693
f:=n->sign(n)*(n mod 2);
a[0]:=0; b[0]:=0; c[0]:=0;
for n from 1 to M do
b[n]:=1+(a[n-1]+b[n-1])/2;
a[n]:=1+c[n-1]+f(c[n-1])+3*f(b[n]-1);
c[n]:=(a[n]-3*b[n])/2;
od:
[seq(a[n], n=0..M)];
[seq(b[n], n=0..M)];
[seq(c[n], n=0..M)];
[seq((c[n]+f(c[n]))/2, n=0..M)]; # A272694
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 08 2016
STATUS
approved