login
A336284
Decimal expansion of Sum_{n>=2} n^(log(n))/log(n)^n.
2
1, 0, 5, 4, 1, 7, 0, 5, 1, 1, 5, 2, 2, 8, 9, 7, 1, 5, 9, 1, 2, 6, 9, 7, 1, 5, 3, 3, 6, 0, 6, 3, 0, 9, 2, 9, 4, 7, 4, 7, 1, 7, 4, 8, 9, 9, 6, 5, 8, 8, 3, 0, 6, 5, 0, 3, 6, 9, 4, 9, 0, 6, 6, 6, 9, 0, 8, 6, 3, 4, 7, 2, 6, 3, 5, 4, 3, 0, 5, 7, 7, 0, 2, 9, 3, 5, 9, 9, 7
OFFSET
2,3
COMMENTS
This series is convergent because there exists n_1 such that for n >= n_1, n^(log(n))/(log(n)^n <= (1/sqrt(e))^n.
FORMULA
Equals Sum_{n>=2} n^(log(n))/log(n)^n.
EXAMPLE
10.5417051152289715912697153360630929474717489965883...
MAPLE
evalf(sum(n^(log(n))/log(n)^n, n=2..infinity), 100);
PROG
(PARI) suminf(n=2, n^(log(n))/log(n)^n) \\ Michel Marcus, Jul 17 2020
CROSSREFS
Cf. A073009 (1/n^n), A099870 (1/n^log(n)), A099871 (1/log(n)^n), A308915 (1/(log(n)^log(n)).
Cf. A092605 (1/sqrt(e)).
Sequence in context: A011503 A296498 A195297 * A258639 A072222 A197001
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Jul 17 2020
STATUS
approved