The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336285 a(0) = 0; for n > 0, a(n) is the least positive integer not occurring earlier such that the digits in a(n-1)+a(n) are all distinct. 6
 0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 50, 52, 51, 54, 55, 65, 58, 62, 61, 59, 64, 56, 67, 57, 63, 60, 66, 68, 69, 70, 72, 71, 74, 73, 75, 77 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In other words, for any n > 0, a(n) + a(n+1) belongs to A010784. The sequence is finite since there are only a finite number of positive integers with distinct digits, see A010784, although the exact number of terms is currently unknown. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..10000 Scott R. Shannon, Image of the first 1000000 terms. The green line is a(n) = n. EXAMPLE The first terms, alongside a(n) + a(n+1), are: n a(n) a(n)+a(n+1) -- ---- ----------- 0 0 1 1 1 3 2 2 5 3 3 7 4 4 9 5 5 12 6 7 13 7 6 14 8 8 17 9 9 19 10 10 21 PROG (PARI) s=0; v=1; for (n=1, 67, print1 (v", "); s+=2^v; for (w=1, oo, if (!bittest(s, w) && #(d=digits(v+w))==#Set(d), v=w; break))) (Python) def agen(): alst, aset, min_unused = [0], {0}, 1 yield 0 while True: an = min_unused while True: while an in aset: an += 1 t = str(alst[-1] + an) if len(t) == len(set(t)): alst.append(an); aset.add(an); yield an if an == min_unused: min_unused = min(set(range(max(aset)+2))-aset) break an += 1 g = agen() print([next(g) for n in range(77)]) # Michael S. Branicky, Mar 11 2021 CROSSREFS Cf. A342383, A338466, A322845, A010784, A043537, A043096, A276633, A002378. Sequence in context: A331269 A073907 A131424 * A222249 A230565 A072797 Adjacent sequences: A336282 A336283 A336284 * A336286 A336287 A336288 KEYWORD nonn,base,fini,look AUTHOR Rémy Sigrist, Jul 22 2020. EXTENSIONS a(0)=0 added by N. J. A. Sloane, Mar 14 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 14 21:48 EDT 2024. Contains 375929 sequences. (Running on oeis4.)