login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106193
Expansion of sqrt(1-4x)/(1-2x^2).
0
1, -2, 0, -8, -10, -44, -104, -352, -1066, -3564, -11856, -40720, -141284, -497464, -1768368, -6343808, -22926426, -83402956, -305142432, -1122083312, -4144811244, -15372407464, -57222156528, -213709942208, -800563540356, -3007228179064, -11325019883616
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(2(n-2k), n-2k)/(1-2(n-2k))*2^k.
Recurrence: n*a(n) +2*(-2*n+3)*a(n-1) -2*n*a(n-2) +4*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Feb 20 2015
MAPLE
with(FormalPowerSeries): # requires Maple 2022
rec:=subs(n=n-1, FindRE(sqrt(1-4*x)/(1-2*x^2), x, r(n))); # yields Mathar's recurrence
a:=gfun:-rectoproc({rec, r(0)=1, r(1)=-2, r(2)=0}, r(n), remember);
seq(a(n), n=0..20); # Georg Fischer, Oct 28 2022
MATHEMATICA
CoefficientList[Series[Sqrt[1-4x]/(1-2x^2), {x, 0, 30}], x] (* Harvey P. Dale, Mar 31 2015 *)
CROSSREFS
Cf. A106192.
Sequence in context: A097348 A271034 A185965 * A334875 A328476 A085814
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 24 2005
STATUS
approved